Solar UV exposure in small children

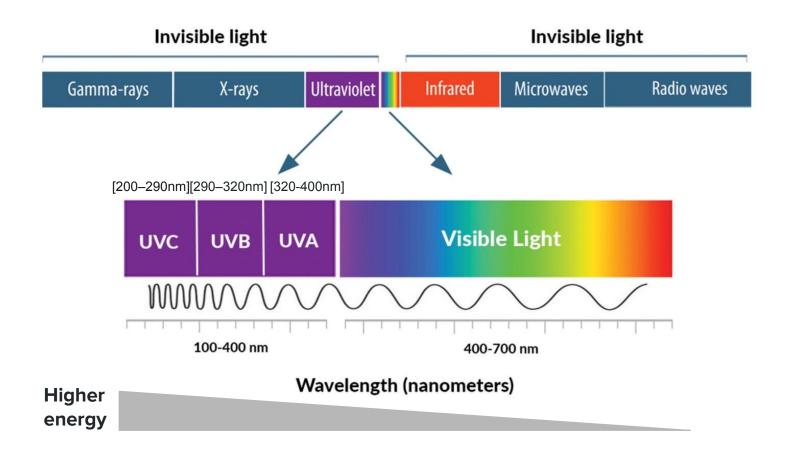
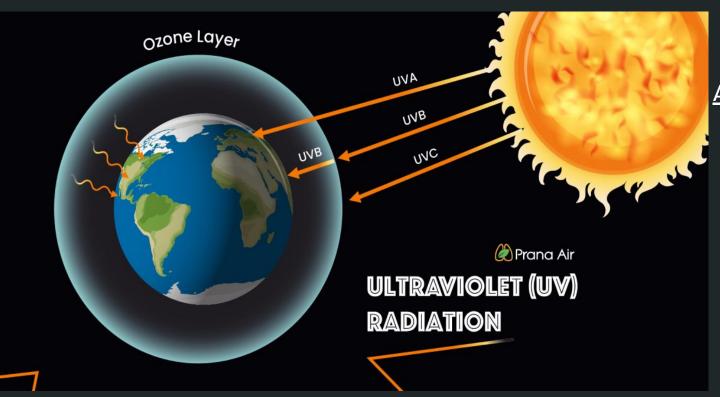
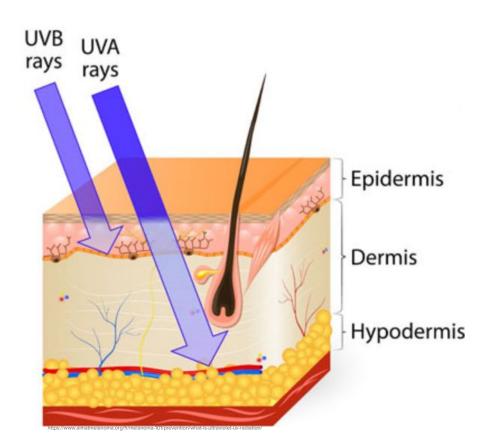

Lola Pricam & Guillaume Jordan

Table of contents


- 1. Contexte
 - a. Electromagnetic radiation
 - b. UV
- 2. Impacts
 - a. Skin
 - b. Eye
 - c. Vitamin D
- 3. Risk factors
- 4. Why are children more impacted?
- 5. Limitations of the data
- 6. Recommendation

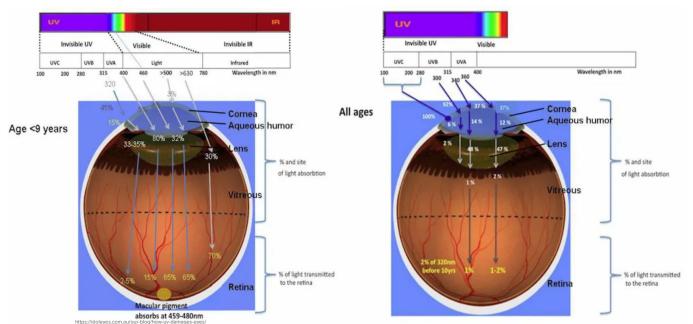
Electromagnetic radiation


UV on earth

At earth surface:

- 95% UVA
- 5% UVB

Impact of UV on skin


UVA:

- skin aging
- DNA dommage
- sun allergy

UVB:

- Skin cancer
- Can cause sunburn 1000 times faster than UVA !!

Impact on eyes

2-5% UV from 320nm can reach retina

1% of UV or less can reach retina

To the cornea:

- pterygium
- pinguecula
- keratites

To the lens:

cataracts

Positive impact

UVB contribute to creation of Vitamin D:

Skin (cholecalciferol) → Liver (hydroxycholecalciferol (25(OH)D3))

→ Kidneys and other cells (dihydroxycholecalciferol (1,25(OH)2D3))

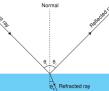
Role of Vitamin D:

- enhancing the intestinal absorption calcium → Particularly important for children's bones formation
- strengthening our immune system
- helps regulate cell growth

UVR has been used for decades to treat skin diseases, especially psoriasis

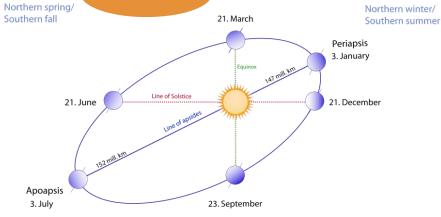
Time of the day

Cloudiness


Month of the year

Altitude

Risk factors


Reflection of snow, water and sand

Type of skin

Skin Type	History of Sunburning or Tanning
I	Always burns easily, never tans
II	Always burns easily, tans minimally
III	Burns moderately, tans gradually and uniformly (light brown)
IV	Burns minimally, always tans well (moderate brown)
V	Rarely burns, tans profusely (dark brown)
VI	Never burns, deeply pigmented (black)

Latitude

Northern summer/ Southern winter Northern fall/ Southern spring https://simple.wikipedia.org/wiki/Earth%27s_orbit

Dose depending on latitude

SED = Standard Erythemal Dose; skin type independent

1 SED / day : safe for most people [7]

Comparison between:	Durham (UK)	Townsville (AUS)
Annual erythemally effective dose	3600 - 4000 SED	14 000 SED
Summer period	2280 SED	6620 SED
Winter period	186 SED	3940 SED

In Switzerland

Recommended value : 0,3 SED / day

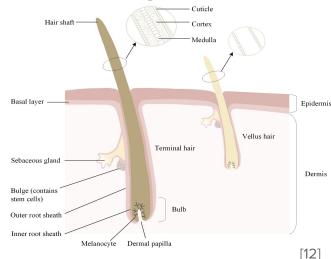
Study on 120 children:

Average annual exposure to the chest:

160 - 260 SED

Comparison with fruit and vegetable

gardeners: 648 SED


Figure: Image of a child wearing the strap containing the two dosimeters. The UV dosimeter is on the left, with the two sensors that measure UVA and UVB radiation.

Why are children more impacted?

- According to studies : ~ 25% of lifetime exposure occur before age 18 [10] or 40-50% of total solar UV received to age 60 occur

before 20 [11]

- Vellus hair follicles closer to the skin surface
 - → greater risk of melanoma
- Vitamin D production reduces with age
 - → the need is higher during childhood
- Skin is thinner and has less pigmentation
- Lenses filtre less UV

Overall → children's skin and eye are more sensitive to UV radiations

Childhood Sun Exposure

Study	Place of registration	Place of birth	Outcome	Age at arrival	RR estimate ^a (95% CI) ^b : males	RR estimate (95% CI): females
Low-to-high migra	ation					
Khlat [19] Australia	England	Mortality	Native-born (ref) ^c 0-<15 15-24 25+	1.00 0.90 (0.74–1.10) 0.41 (0.32–0.54) 0.32 (0.27–0.39)	1.00 0.79 (0.61–1.03) 0.43 (0.29–0.62) 0.32 (0.27–0.39)	
	Ireland/Scotland/ Wales	Mortality	Native-born (ref) 0-<15 15-24 25+	1.00 0.77 (0.55–1.07) 0.46 (0.32–0.66) 0.31 (0.22–0.41)	1.00 0.70 (0.45–1.11) 0.52 (0.32–0.85) 0.29 (0.19–0.43)	
High-to-low migra						
Mack and Floderus [14]	Seattle	California	Incidence	Other SSN (ref) CA/AZ SSN	1.00 1.11 (0.82–1.51)	1.00 1.26 (0.91–1.69)
Autier [28]	Belgium, France, Germany	Sunny places	Incidence	Never lived sunny place Born sunny place Sunny place <10 yrs Sunny place 10–22 yrs Sunny place 23+ years	1.00 6.56 (1.84–23.4) 4.31 (1.68–11.1) 2.38 (0.42–13.6) 1.52 (0.55–4.22)	NS

Limitations of the data

- Exposure values difficult to measure
- Study on children are quite difficult → lack of studies
- Pretty old studies

Recommendations

Federal Office of Public Health (OFSP)

[min]	personnes particulièrement sensibles aux UV, à la peau ou claire très claire et enfants			
	matin	midi	après-midi	
février, mars, octobre, novembre	50 - 120	20 - 60	30 - 120	
avril, septembre	30 - 60	15 - 30	20 - 50	
mai jusqu'à août	20 – 45	10 - 20	15 - 30	

Table 1. Combined duration of exposure to the sun in the morning from 9am (summer time: 10am), in the middle of the day from 12.30pm (summer time: 1.30pm), and in the afternoon from 3pm (summer time: 4pm), after which solar erythema may appear on exposed parts of the body in a standing position.[13]

	personnes particulièrement sensibles aux UV, à la peau claire ou très claire et enfants		
	matin	midi	après-midi
janvier, décembre	>4 h	1½ - 2½ h	n/a*
février, novembre	2½ - 3½ h	½ - 1½ h	2 - 3 h
mars, octobre	1 - 2 h	1⁄4 - 1⁄2 h	½ - 3 h
avril, septembre	30 - 45 min	10 min	15 - 30 min
mai, août	15 - 30 min	5 - 10 min	10 - 15 min
juin, juillet	15 - 20 min	5 - 10 min	10 - 15 min

^{*} La dose reçue est trop faible pour produire 600 UI.

Table 2. Duration of exposure to the sun in the morning from 9am (summer time: 10am), in the middle of the day from 12.30pm (summer time: 1.30pm) and in the afternoon from 3pm (summer time: 4pm), to produce afternoon from 3pm (summer time: 4pm), to produce 600 international units of vitamin D (standing, face, hands and arms exposed to the sun) [13]

Behavioural rules

Avoid the sun between 11 am and 3 pm

Ware closes and hats

Suncream

Sunglasses

Daily intake of 400 IU of vitamin D will prevent vitamin D deficiency rickets in infants.

Thank you for your attention!

Any questions?

References

- [1]Laurent Marrot, Jean-Roch Meunier, Skin DNA photodamage and its biological consequences, *Journal of the American Academy of Dermatology,* Volume 58, Issue 5, Supplement 2, 2008, Pages S139-S148, ISSN 0190-9622, https://doi.org/10.1016/j.jaad.2007.12.007.
- [2]Sophie J. Balk, the Council on Environmental Health and Section on Dermatology; Ultraviolet Radiation: A Hazard to Children and Adolescents. *Pediatrics* March 2011; 127 (3): e791–e817. 10.1542/peds.2010-3502
- [3] Woo DK, Eide MJ. Tanning beds, skin cancer, and vitamin D: an examination of the scientific evidence and public health implications. *Dermatol Ther*. 2010;23(1):61–71
- [4] Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. *Cancer Causes Control*. 2001;12(1):69–82
- [5] Ivanov IV, Mappes T, Schaupp P, Lappe C, Wahl S. Ultraviolet radiation oxidative stress affects eye health. *J. Biophotonics*. 2018; 11:e201700377. https://doi.org/10.1002/jbio.201700377
- [6] Zielinska-Dabkowska, Karolina. (2014). Vitamin D. The truth about Vitamin D and sun exposure demystified. Finding the balance for personal health.. Professional Lighting Design. 40-48.
- [7] Australia Radiation Protection and Nuclear Safety Agency Ultraviolet radiation exposure and dose explained
- [8] Moise AF, Harrison SL, Gies HP. Solar ultraviolet radiation exposure of infants and small children. Photodermatol Photoimmunol Photomed. 1999 Jun-Aug;15(3-4):109-14. doi: 10.1111/j.1600-0781.1999.tb00069.x. PMID: 10404720.

References

- [9] ChristopheL.Folly,BenD.Spycher Institute For Social And Preventive Medicine(ISPM),University of Bern; Childrens exposure tUV: results of nationwide measurement campaign.
- [10] Sophie J. Balk, the Council on Environmental Health and Section on Dermatology; Ultraviolet Radiation: A Hazard to Children and Adolescents. *Pediatrics* March 2011; 127 (3): e791–e817. 10.1542/peds.2010-3502.
- [11] Green AC, Wallingford SC, McBride P. Childhood exposure to ultraviolet radiation and harmful skin effects: epidemiological evidence. Prog Biophys Mol Biol. 2011 Dec;107(3):349-55. doi: 10.1016/j.pbiomolbio.2011.08.010. Epub 2011 Sep 3. PMID: 21907230; PMCID: PMC3409870.
- [12] Xiyong Huang, Michael D. Protheroe, Ahmed M. Al-Jumaily, Sharad P. Paul, Andrew N. Chalmers, "Review of human hair optical properties in possible relation to melanoma development," J. Biomed. Opt. 23(5) 050901 (11 May 2018) https://doi.org/10.1117/1.JBO.23.5.050901
- [13] Office fédéral de la santé public OFSP. Fiche d'information Vitamine D et rayonnement solaire [14] Office fédéral de la santé public OFSP. Protection solaire